N. A. Fitzsimmons, W. Drake, T. L. Hanson, M. A. Lebedev, and M. A. L. Nicolelis
The Journal of Neuroscience, May 23, 2007, 27(21):5593-5602;
Both humans and animals can discriminate signals delivered to sensory areas of their brains using electrical microstimulation. This opens the possibility of creating an artificial sensory channel that could be implemented in neuroprosthetic devices. Although microstimulation delivered through multiple implanted electrodes could be beneficial for this purpose, appropriate microstimulation protocols have not been developed. Here, we report a series of experiments in which owl monkeys performed reaching movements guided by spatiotemporal patterns of cortical microstimulation delivered to primary somatosensory cortex through chronically implanted multielectrode arrays. The monkeys learned to discriminate microstimulation patterns, and their ability to learn new patterns and new behavioral rules improved during several months of testing. Significantly, information was conveyed to the brain through the interplay of microstimulation patterns delivered to multiple electrodes and the temporal order in which these electrodes were stimulated. This suggests multichannel microstimulation as a viable means of sensorizing neural prostheses.
Fulltext: http://www.jneurosci.org/cgi/reprint/27/21/5593
Friday, May 25, 2007
Primate Reaching Cued by Multichannel Spatiotemporal Cortical Microstimulation
Posted by Ali at 6:15 AM
Labels: brain–machine interface, discrimination, microstimulation, neuroprosthetics, Primate, somatosensory
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment